An Empirical Central Limit Theorem with applications to copulas under weak dependence
نویسندگان
چکیده
We state a multidimensional Functional Central Limit Theorem for weakly dependent random vectors. We apply this result to copulas. We get the weak convergence of the empirical copula process and of its smoothed version. The finite dimensional convergence of smoothed copula densities is also proved. A new definition and the theoretical analysis of conditional copulas and their empirical counterparts are provided.
منابع مشابه
Testing for equality between two copulas
We develop a test of equality between two dependence structures estimated through empirical copulas. We provide inference for independent or paired samples. The multiplier central limit theorem is used for calculating p-values of the Cramér-von Mises test statistic. Finite sample properties are assessed with Monte Carlo experiments. We apply the testing procedure on empirical examples in financ...
متن کاملLimiting Dependence Structures for Tail Events, with Applications to Credit Derivatives
Dependence structures for bivariate extremal events are analyzed using particular types of copula. Weak convergence results for copulas along the lines of the Pickands–Balkema– de Haan theorem provide limiting dependence structures for bivariate tail events. A characterization of these limiting copulas is also provided by means of invariance properties. The results obtained are applied to the c...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملUniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate
We prove uniform convergence results for the integrated periodogram of a weakly dependent time series, namely a law of large numbers and a central limit theorem. These results are applied to Whittle’s parametric estimation. Under general weak-dependence assumptions we derive uniform limit theorems and asymptotic normality of Whittle’s estimate for a large class of models. For instance the causa...
متن کاملEmpirical copula processes under serial dependence and weak smooth - ness conditions
The empirical copula process plays a central role for statistical inference on copulas. Recently, Segers (2012) investigated the asymptotic behavior of this process under non-restrictive smoothness assumptions for the case of i.i.d. random variables. In the first part of the talk, we extend his main result to the case of serial dependent random variables by means of the powerful and elegant fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009